Sort by

recency

|

677 Discussions

|

  • + 0 comments

    Code in Python 3

    #!/bin/python3
    
    import math
    import os
    import random
    import re
    import sys
    
    #
    # Complete the 'commonChild' function below.
    #
    # The function is expected to return an INTEGER.
    # The function accepts following parameters:
    #  1. STRING s1
    #  2. STRING s2
    #
    
    def commonChild(s1, s2):
        # Write your code here
        n=len(s1)
        g=len(s2)
        m=[]
        for i in range(n+1):
            m.append([])
            for _ in range(g+1):
                m[i].append(0)
        for i in range(n):
            for j in range(g):
                if s1[i]==s2[j]:
                    m[i+1][j+1]=max(m[i][j]+1,m[i+1][j-1])
                    continue
                m[i+1][j+1]=max(m[i+1][j],m[i][j+1])
        return m[-1][-1]
    
    if __name__ == '__main__':
        fptr = open(os.environ['OUTPUT_PATH'], 'w')
    
        s1 = input()
    
        s2 = input()
    
        result = commonChild(s1, s2)
    
        fptr.write(str(result) + '\n')
    
        fptr.close()
    
  • + 0 comments

    Python 3:

    #!/bin/python3
    
    import math
    import os
    import random
    import re
    import sys
    
    #
    # Complete the 'commonChild' function below.
    #
    # The function is expected to return an INTEGER.
    # The function accepts following parameters:
    #  1. STRING s1
    #  2. STRING s2
    #
    
    def commonChild(s1, s2):
        # Write your code here
        dp = [[0] * (len(s2) + 1) for _ in range(len(s1) + 1)]
        
        for i in range(1, len(s1) + 1):
            for j in range(1, len(s2) + 1):
                if s1[i - 1] == s2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        return dp[len(s1)][len(s2)]
    
    if __name__ == '__main__':
        fptr = open(os.environ['OUTPUT_PATH'], 'w')
    
        s1 = input()
    
        s2 = input()
    
        result = commonChild(s1, s2)
    
        fptr.write(str(result) + '\n')
    
        fptr.close()
    
  • + 0 comments
    def commonChild(s1, s2):
        n=len(s1)
        g=len(s2)
        m=[]
        for i in range(n+1):
            m.append([])
            for _ in range(g+1):
                m[i].append(0)
        for i in range(n):
            for j in range(g):
                if s1[i]==s2[j]:
                    m[i+1][j+1]=max(m[i][j]+1,m[i+1][j-1])
                    continue
                m[i+1][j+1]=max(m[i+1][j],m[i][j+1])
        return m[-1][-1]
    
  • + 0 comments

    Another word for this is "longest common subsequence" (or lcs). The basic algorithm is

    int lcs(char *s1, int i, char *s2, int j) {
        if (i == s1.length || j == s2.length) {
            return 0;
        }
        if (s1[i] == s2[j]) {
            return 1 + lcs(s1, i+1, s2, j+1);
        }
        return max(lcs(s1, i+1, s2, j), lcs(s1, i, s2, j+1);
    }
    

    Called from main with

    return lcs(s1, 0, s2, 0);
    

    Of course, you will need to use memoization to avoid an exponential run time.

  • + 0 comments
    import bisect
    from collections import defaultdict, deque
    from itertools import chain
    
    def longest_increasing_subsequence_length(s):
        lis, covers, last_cover_members = deque(), defaultdict(list), []
        for c in s:
            i = bisect.bisect_left(last_cover_members, c)
            covers[i].append(c)
            if i >= len(last_cover_members):
                last_cover_members.append(c)
            else:
                last_cover_members[i] = c
    
        return len(last_cover_members)
    
    def commonChild(s1, s2):
        indices_sorted_rev = defaultdict(list)
        for i in range(len(s2) - 1, -1, -1):
            indices_sorted_rev[s2[i]].append(i)
        indices_of_s1_chars_in_s2_rev_sorted = list( chain.from_iterable( (indices_sorted_rev[c] for c in s1) ) )
        if not indices_of_s1_chars_in_s2_rev_sorted:
            return 0
        return longest_increasing_subsequence_length( indices_of_s1_chars_in_s2_rev_sorted )